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What is PipelineDB?

● Continuous SQL on streams (continuous views)

● High-throughput, incremental materialized views

● Based on PostgreSQL 9.5

● No special client libraries

● Free and open-source (GPLv3)

● (30-second demo)
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When is PipelineDB not useful?

● SQL isn’t a fit

● Ad-hoc on granular data
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When is PipelineDB useful?

● High throughput aggregations (realtime reporting/analytics)

● Computations over sliding windows (continuous monitoring/ops)

● Queries are known in advance
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Simplicity is nice,
but what else?

continuous view
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Benefits of continuous SQL on streams

● Sliding window queries

● Any information outside of the window is excluded from results and 
deleted from disk

● Essentially automatic TTL

CREATE CONTINUOUS VIEW v WITH (max_age = ‘1 hour’) AS
    SELECT COUNT(*) FROM stream



Benefits of continuous SQL on streams

CREATE CONTINUOUS VIEW v AS
    SELECT COUNT(DISTINCT x) FROM never_ending_stream

● Probabilistic computations on infinite inputs

● Streaming Top-K, Percentiles, distincts, large set cardinalities
● Constant space
● No sorting
● Small margin of error



Internals (part 1/2)
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Streams

● Internally, a stream is Foreign Table

CREATE STREAM stream (x int, y int, z int);
INSERT INTO stream (x, y, z) VALUES (0, 1, 2);



Streams

CREATE STREAM stream (x int, y int, z int);
INSERT INTO stream (x, y, z) VALUES (0, 1, 2);

● Internally, a stream is Foreign Table

● System-wide Foreign Server called pipeline_streams

● stream_fdw reads from/writes to the Stream Buffer

● No permanent storage

● Stream rows only exist until they’ve been fully read
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stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

HeapTuple

HeapTuple

● INSERT INTO ...

● Concurrent 
circular buffer

● Preallocated block 
of shared memory

HeapTuple {0,1,0,1,1}

HeapTuple {1,1,1,1,1}✗



stream buffer query on microbatch incremental table update

/* At Postmaster startup time ... */
worker.bgw_main = any_function;
worker.bgw_main_arg = (Datum) arg;

RegisterDynamicBackgroundWorker(&worker, &handle);
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SELECT count(*), avg(x) FROM stream



stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

...

HeapTuple

SELECT count(*), avg(x) FROM stream

AGG

stream_fdw#GetStreamScanPlan

while (!BatchDone(node))
{
  tup = PinNext(buf)
  yield MarkAsRead(tup)
}

1000

count

{1000, 4000}

avg

microbatch_result



Worker proc 0

Worker proc 1

Worker proc ...

Worker proc n

tuples round-robin’d across
n worker procs

Worker process parallelism

Stream buffer



Internals (part 2/2)

Incremental
Updates
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stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

● pipeline_combine catalog table maps combine functions to aggregates

● No changes to pg_aggregate catalog table or existing aggregate functions

● User-defined aggregates just need a combinefunc to be combinable

CREATE AGGREGATE combinable_agg(x)
(
    sfunc=sfunc,
    finalfunc=finalfunc,
    combinefunc=combinefunc,
);
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stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

● pipeline_combine catalog table maps combine functions to aggregates

microbatch_result

{1000, 4000}

avg

1000

count

{1000, 4000}

avg

1000

count

{5000, 10000}5000

combine()

{6000, 14000}

avg

6000

count

updated_result

existing on-disk row
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stream buffer query on microbatch incremental table update

lookup_plan = get_plan(SELECT * FROM matrel WHERE hash_group(x, y, z) IN (...))

/* dynamically generate a VALUES node */
foreach(row, microbatch)
  values = lappend(values, hash_group(row));

set_values(lookup_plan, values)

existing = PortalRun(lookup_plan, ...)

/* now we’re reading to combine these on-disk tuples with the incoming batch result */



stream buffer query on microbatch incremental table update

● This query needs to be as fast as possible

● Continuous views indexed on a 32-bit hash of grouping

● Pro: maximize cardinality of the index keyspace, great for random perf

● Con: must deal with collisions programmatically

SELECT * FROM matrel WHERE hash_group(x, y, z) IN (hash(microbatch group), ...)
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SELECT * FROM matrel WHERE hash_group(x, y, z) IN (hash(microbatch group), ...)

● If the grouping contains a time-based column, we can do better

CREATE ... AS SELECT day(timestamp), count(*) FROM stream GROUP BY day
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stream buffer query on microbatch incremental table update

SELECT * FROM matrel WHERE hash_group(x, y, z) IN (hash(microbatch group), ...)

● If the grouping contains a time-based column, we can do better

● These continuous views are indexed with 64 bits:hash of grouping

● Pro: most incoming groups will have a similar timestamp, so better index caching

● Con: larger index footprint

Timestamp from group (32 bits) Regular 32-bit grouping hash

CREATE ... AS SELECT day(timestamp), count(*) FROM stream GROUP BY day
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stream buffer query on microbatch incremental table update

microbatch result generated from stream by worker

existing result retrieved from disk

✔
✔

combine_plan = get_plan(SELECT group, combine(count), combine(avg)
  FROM microbatch_result UNION existing GROUP BY group);

combined = PortalRun(combine_plan, ...)

foreach(row, combined)
{
  if (new_tuple(row))
    heap_insert(row, …);
  else
    heap_update(row, …);
}



grouping (a, b, c)

grouping (d, e, f)

grouping (g, h, i)

grouping (j, k, l)

On-disk groupings are sharded over combiners by 
group

Each row is guaranteed to only ever be updated by 
one combiner process

Combiner process parallelism

Continuous view
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Just released! Continuous transforms
● Worker-only continuous queries

● Arbitrary procedure called on its output rows

● Enable work sharing between continuous views

CREATE CONTINUOUS TRANSFORM xform AS
SELECT foo(col), bar(col) FROM raw_stream
THEN EXECUTE PROCEDURE pipeline_stream_insert(‘normalized_stream’)

CREATE CONTINUOUS VIEW v0 AS SELECT … FROM normalized_stream;
CREATE CONTINUOUS VIEW v1 AS SELECT … FROM normalized_stream;



?
Thanks!
● derek@pipelinedb.com

● pipelinedb.com

● docs.pipelinedb.com

● github.com/pipelinedb


