
Streaming SQL with

PipelineDB

Derek Nelson

What is PipelineDB?

What is PipelineDB?

● Continuous SQL on streams (continuous views)

What is PipelineDB?

● Continuous SQL on streams (continuous views)

● High-throughput, incremental materialized views

What is PipelineDB?

● Continuous SQL on streams (continuous views)

● High-throughput, incremental materialized views

● Based on PostgreSQL 9.5

What is PipelineDB?

● Continuous SQL on streams (continuous views)

● High-throughput, incremental materialized views

● Based on PostgreSQL 9.5

● No special client libraries

What is PipelineDB?

● Continuous SQL on streams (continuous views)

● High-throughput, incremental materialized views

● Based on PostgreSQL 9.5

● No special client libraries

● Free and open-source (GPLv3)

What is PipelineDB?

● Continuous SQL on streams (continuous views)

● High-throughput, incremental materialized views

● Based on PostgreSQL 9.5

● No special client libraries

● Free and open-source (GPLv3)

● (30-second demo)

When is PipelineDB not useful?

When is PipelineDB not useful?

● SQL isn’t a fit

● Ad-hoc on granular data

When is PipelineDB useful?

When is PipelineDB useful?

● High throughput aggregations (realtime reporting/analytics)

● Computations over sliding windows (continuous monitoring/ops)

● Queries are known in advance

100,000 feet

Produce

Process

Consume

100,000 feet

Process

ConsumeSQLProduce

100,000 feet

Process

ConsumeSQLProduce

Aggregation
Filtering
Sliding windows

100,000 feet

Process

ConsumeSQLProduce

Aggregation
Filtering
Sliding windows

= Reduction

Why did we build it?

Produce

Process

Consume

Produce
Consume

Produce
Consume

PipelineDB
continuous view

Produce
Consume

PipelineDB

Simplicity is nice,
but what else?

continuous view

Benefits of continuous SQL on streams

● Aggregate before writing to disk

Benefits of continuous SQL on streams

● Aggregate before writing to disk

total data
ingested

database size

CREATE CONTINUOUS VIEW v AS
 SELECT COUNT(*) FROM stream

Benefits of continuous SQL on streams

● Aggregate before writing to disk

total data
ingested

database size

CREATE CONTINUOUS VIEW v AS
 SELECT COUNT(*) FROM stream

(winning)

Benefits of continuous SQL on streams

● Sliding window queries

● Any information outside of the window is excluded from results and
deleted from disk

● Essentially automatic TTL

CREATE CONTINUOUS VIEW v WITH (max_age = ‘1 hour’) AS
 SELECT COUNT(*) FROM stream

Benefits of continuous SQL on streams

CREATE CONTINUOUS VIEW v AS
 SELECT COUNT(DISTINCT x) FROM never_ending_stream

● Probabilistic computations on infinite inputs

● Streaming Top-K, Percentiles, distincts, large set cardinalities
● Constant space
● No sorting
● Small margin of error

Internals (part 1/2)

Streams and
Workers

Streams

● Internally, a stream is Foreign Table

CREATE STREAM stream (x int, y int, z int);
INSERT INTO stream (x, y, z) VALUES (0, 1, 2);

Streams

CREATE STREAM stream (x int, y int, z int);
INSERT INTO stream (x, y, z) VALUES (0, 1, 2);

● Internally, a stream is Foreign Table

● System-wide Foreign Server called pipeline_streams

● stream_fdw reads from/writes to the Stream Buffer

● No permanent storage

● Stream rows only exist until they’ve been fully read

stream buffer query on microbatch incremental table update

stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

HeapTuple

HeapTuple

● INSERT INTO ...

stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

HeapTuple

HeapTuple

● INSERT INTO ...

● Concurrent
circular buffer

stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

HeapTuple

HeapTuple

● INSERT INTO ...

● Concurrent
circular buffer

● Preallocated block
of shared memory

stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

HeapTuple

HeapTuple

● INSERT INTO ...

● Concurrent
circular buffer

● Preallocated block
of shared memory

HeapTuple {0,1,0,1,1}

stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

HeapTuple

HeapTuple

● INSERT INTO ...

● Concurrent
circular buffer

● Preallocated block
of shared memory

HeapTuple {0,1,0,1,1}

HeapTuple {1,1,1,1,1}

stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

HeapTuple

HeapTuple

● INSERT INTO ...

● Concurrent
circular buffer

● Preallocated block
of shared memory

HeapTuple {0,1,0,1,1}

HeapTuple {1,1,1,1,1}✗

stream buffer query on microbatch incremental table update

/* At Postmaster startup time ... */
worker.bgw_main = any_function;
worker.bgw_main_arg = (Datum) arg;

RegisterDynamicBackgroundWorker(&worker, &handle);

stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

...

HeapTuple

SELECT count(*), avg(x) FROM stream

stream buffer query on microbatch incremental table update

HeapTuple

HeapTuple

HeapTuple

...

HeapTuple

SELECT count(*), avg(x) FROM stream

AGG

stream_fdw#GetStreamScanPlan

while (!BatchDone(node))
{
 tup = PinNext(buf)
 yield MarkAsRead(tup)
}

1000

count

{1000, 4000}

avg

microbatch_result

Worker proc 0

Worker proc 1

Worker proc ...

Worker proc n

tuples round-robin’d across
n worker procs

Worker process parallelism

Stream buffer

Internals (part 2/2)

Incremental
Updates

stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

● pipeline_combine catalog table maps combine functions to aggregates

stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

● pipeline_combine catalog table maps combine functions to aggregates

● No changes to pg_aggregate catalog table or existing aggregate functions

stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

● pipeline_combine catalog table maps combine functions to aggregates

● No changes to pg_aggregate catalog table or existing aggregate functions

● User-defined aggregates just need a combinefunc to be combinable

CREATE AGGREGATE combinable_agg(x)
(
 sfunc=sfunc,
 finalfunc=finalfunc,
 combinefunc=combinefunc,
);

stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

● pipeline_combine catalog table maps combine functions to aggregates

microbatch_result

{1000, 4000}

avg

1000

count

stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

● pipeline_combine catalog table maps combine functions to aggregates

microbatch_result

{1000, 4000}

avg

1000

count

{1000, 4000}

avg

1000

count

{5000, 10000}5000

combine()

stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

● pipeline_combine catalog table maps combine functions to aggregates

microbatch_result

{1000, 4000}

avg

1000

count

{1000, 4000}

avg

1000

count

{5000, 10000}5000

combine()

existing on-disk row

stream buffer query on microbatch incremental table update

● transition_state = combine(microbatch_tstate, existing_tstate)

● pipeline_combine catalog table maps combine functions to aggregates

microbatch_result

{1000, 4000}

avg

1000

count

{1000, 4000}

avg

1000

count

{5000, 10000}5000

combine()

{6000, 14000}

avg

6000

count

updated_result

existing on-disk row

stream buffer query on microbatch incremental table update

lookup_plan = get_plan(SELECT * FROM matrel WHERE hash_group(x, y, z) IN (...))

stream buffer query on microbatch incremental table update

lookup_plan = get_plan(SELECT * FROM matrel WHERE hash_group(x, y, z) IN (...))

/* dynamically generate a VALUES node */
foreach(row, microbatch)
 values = lappend(values, hash_group(row));

stream buffer query on microbatch incremental table update

lookup_plan = get_plan(SELECT * FROM matrel WHERE hash_group(x, y, z) IN (...))

/* dynamically generate a VALUES node */
foreach(row, microbatch)
 values = lappend(values, hash_group(row));

set_values(lookup_plan, values)

stream buffer query on microbatch incremental table update

lookup_plan = get_plan(SELECT * FROM matrel WHERE hash_group(x, y, z) IN (...))

/* dynamically generate a VALUES node */
foreach(row, microbatch)
 values = lappend(values, hash_group(row));

set_values(lookup_plan, values)

existing = PortalRun(lookup_plan, ...)

/* now we’re reading to combine these on-disk tuples with the incoming batch result */

stream buffer query on microbatch incremental table update

● This query needs to be as fast as possible

● Continuous views indexed on a 32-bit hash of grouping

● Pro: maximize cardinality of the index keyspace, great for random perf

● Con: must deal with collisions programmatically

SELECT * FROM matrel WHERE hash_group(x, y, z) IN (hash(microbatch group), ...)

stream buffer query on microbatch incremental table update

SELECT * FROM matrel WHERE hash_group(x, y, z) IN (hash(microbatch group), ...)

● If the grouping contains a time-based column, we can do better

CREATE ... AS SELECT day(timestamp), count(*) FROM stream GROUP BY day

stream buffer query on microbatch incremental table update

SELECT * FROM matrel WHERE hash_group(x, y, z) IN (hash(microbatch group), ...)

● If the grouping contains a time-based column, we can do better

● These continuous views are indexed with 64 bits:hash of grouping

Timestamp from group (32 bits) Regular 32-bit grouping hash

CREATE ... AS SELECT day(timestamp), count(*) FROM stream GROUP BY day

stream buffer query on microbatch incremental table update

SELECT * FROM matrel WHERE hash_group(x, y, z) IN (hash(microbatch group), ...)

● If the grouping contains a time-based column, we can do better

● These continuous views are indexed with 64 bits:hash of grouping

● Pro: most incoming groups will have a similar timestamp, so better index caching

● Con: larger index footprint

Timestamp from group (32 bits) Regular 32-bit grouping hash

CREATE ... AS SELECT day(timestamp), count(*) FROM stream GROUP BY day

stream buffer query on microbatch incremental table update

microbatch result generated from stream by worker✔

stream buffer query on microbatch incremental table update

microbatch result generated from stream by worker

existing result retrieved from disk

✔
✔

stream buffer query on microbatch incremental table update

microbatch result generated from stream by worker

existing result retrieved from disk

✔
✔

combine_plan = get_plan(SELECT group, combine(count), combine(avg)
 FROM microbatch_result UNION existing GROUP BY group);

combined = PortalRun(combine_plan, ...)

foreach(row, combined)
{
 if (new_tuple(row))
 heap_insert(row, …);
 else
 heap_update(row, …);
}

grouping (a, b, c)

grouping (d, e, f)

grouping (g, h, i)

grouping (j, k, l)

On-disk groupings are sharded over combiners by
group

Each row is guaranteed to only ever be updated by
one combiner process

Combiner process parallelism

Continuous view

Just released! Continuous transforms

Just released! Continuous transforms
● Worker-only continuous queries

Just released! Continuous transforms
● Worker-only continuous queries

● Arbitrary procedure called on its output rows

Just released! Continuous transforms
● Worker-only continuous queries

● Arbitrary procedure called on its output rows

● Enable work sharing between continuous views

Just released! Continuous transforms
● Worker-only continuous queries

● Arbitrary procedure called on its output rows

● Enable work sharing between continuous views

CREATE CONTINUOUS TRANSFORM xform AS
SELECT foo(col), bar(col) FROM raw_stream
THEN EXECUTE PROCEDURE pipeline_stream_insert(‘normalized_stream’)

Just released! Continuous transforms
● Worker-only continuous queries

● Arbitrary procedure called on its output rows

● Enable work sharing between continuous views

CREATE CONTINUOUS TRANSFORM xform AS
SELECT foo(col), bar(col) FROM raw_stream
THEN EXECUTE PROCEDURE pipeline_stream_insert(‘normalized_stream’)

CREATE CONTINUOUS VIEW v0 AS SELECT … FROM normalized_stream;
CREATE CONTINUOUS VIEW v1 AS SELECT … FROM normalized_stream;

?
Thanks!
● derek@pipelinedb.com

● pipelinedb.com

● docs.pipelinedb.com

● github.com/pipelinedb

