Sorting Through The Ages

% Why sorting?
> |It's a nice isolated module that’s easy to understand without understanding the entire

PostgreSQL code base

> It's highly visible for users and affects many queries and commands
% But why the history?
> Understanding the decisions that led to the current code helps explain why things are the way
they are today and what factors led to the limitations and compromises that are there today
> Many of the changes fixed real problems that users faced, and understanding past problems

shows us what future problems and their solutions may look like

Time to Sort

150s
140s
130s
120s
110s
100s
90s
80s
70s
60s
50s
40s
30s
20s
10s
Os

Sorting Through The Ages

b p® g0 ok 43 9

Millions of Rows Sorfed

e? o

©

*

=8 2002-11-27

y | == 2003-11-18

-— 2005-01-17
=& 2005-11-08
—&— 20086-02-18
== 2006-12-02
=& 2007-05-21
== 2008-02-01
=& 2009-06-27
=& 2010-09-17
=& 2011-09.08
=& 2011-12-07
=& 2012-02-15
=& 2012-09-08
=& 2013-01-17
=& 2013-06-27
=& 2013-08-02
—8— 2014-12-18
—&— 2015-01-18
=& 2016-01-04

Sorting Through The Ages

Time to Sort

GIT Commit Date (of last release for point releases)

Sorting Through The Ages

8.3: NULLS FIRST/LAST

9.1: Per-Column Collations

-
=]
w
2
£
E -
10s : - : f_“"‘--_._.__ ; : _j = R ——sg
. — ——t— 2 =yttt =
A A A A A o AR
oS O 19 o® WS R o
10% :1““ 1&“ Q0 10 20 10

GIT Commit Date (of last release for point releases)

Postgres95 - First public release

Sort code in psort.c is 618 lines long.

It implements only one sort algorithm, an external (on-disk) algorithm out of

Knuth called Replacement Selection.

?7?7?

PostgreSQL 9.5

PostgreSQL 9.4

PostgreSQL 9.3

PostgreSQL 9.2

PostgreSQL 9.1

PostgreSQL 9.0

PostgreSQL 8.4

PostgreSQL 8.3

PostgreSQL 8.2

PostgreSQL 8.1

PostgreSQL 8.0

PostgreSQL 7.4

PostgreSQL 7.3

PostgreSQL 7.2

PostgreSQL 7.1

PostgreSQL 7.0

PostgreSQL 6.5

PostgreSQL 6.4

PostgreSQL 6.3

PostgreSQL 6.2

PostgreSQL 6.1

PostgreSQL 6.0

Postgres95

Future

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

PostgreSQL 6.2 - Use quicksort when data fits in memory

| 272

Future
_ PostgreSQL 9.5 2016
2015
_ PostgreSQL 9.4

2014

_ PostgreSQL 9.3

o
Q
e
0
()]
Q
3]
P
1y
m -
_H g o
w O
< .o .l t e NO‘_w
©) X~
© 0% 0 o> _ PostgreSQL 9.2
W A 0 %6 g 2012
N B 89 »a
AR/_J 0 DO Q _ PostgreSQL 9.1
™m - (0]
% m . m D M - 2011
Do PostgreSQL 9.0
98 & 0G5 | 2010
w MN_ n..u.. .m“ + m H | PostgresaL 8.4
N~ g ¥ 0 2009
T E Y
A S oHEQ | PostgresaL 8.3 2008
< H oo M-
- > - -~ P2y
A.._.a 5 _./. m .w g A _ PostgreSQL 8.2
S O ™M o o -
Q0 - H oW ﬁ m) 2006
B m % " o 5 ...u_ m | PostgresalL 8.1
ﬂ m 0 cmu_ M.h - © M.“ _ PostgreSQL 8.0 2005
(0] — .m 0 o
~ - +H S Moy
omge &« 3+ 0 2004
To] Q (O = & _ PostgreSQL 7.4
YED L,E88q
' - O H .5 2003
AM_U m ..m % m Ty AVu PostgreSQL 7.3
i .
PostgreSQL 7.2
~ . oo Y| W.. nnw < ostgre 2002
._.w_.m 5 -l | | PostgresaL 7.1 2001
m ..m ._&. | PostgresaL 7.0
O=A 2000
| PostgresaL 6.5
_ PostgreSQL 6.4 1999

| PostgresaL 6.3

1998

PostgreSQL 6.2

stgreSQL 6.0 A

1997

1996

Postgres95

1995

A quick digression -- Quicksort

7
L X4

Invented in 1959 by Tony Hoare
In-memory only algorithm
n-log(n) average run-time
Very low constant factor
Very efficient use of CPU cache and registers
“Cache-oblivious”
> Does not depend on tuning for specific cache sizes
Available in standard C library

Has O(n?) worst-case (but unlikely)
> Worse cases tend to happen in cases like partially sorted data

or “organ-pipe” data (increasing then decreasing).

> Various strategies to mitigate -- choice of pivot, randomizing inputs

Tony Hoare

A longer digression -- Replacement Selection

Postgres implements an external sort using Replacement Selection with
Polyphase Merge straight out of Knuth first published in 1973.

% External (on-disk) sort which works with a limited subset of the data in-
memory at any one time

R/
%

Writes data out to disk in sorted runs then reads it back into memory to
merge into longer runs

% Repeats the merge process until only one tape is left
% Replacement selection (R1-R3)--Knuth, Vol.3, p.257
% Polyphase merge Alg.D (D1-D6)--Knuth, Vol.3, p.270-271

It always generates files on disk for temporary runs and always generates a new
file on disk for the resulting sorted relation.

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of
Computer

Programming

VOLUME 3

Sorting and Searching
Second Edition

DONALD E. KNUTH

Replacement Selection: Generate Runs

F C B D A B G C
N S
B

C F

% Load as many values as possible in working memory (work_mem)

« Build a priority queue using a heap

Replacement Selection: Generate Runs

F C B D A B G C
N S

B
C F

l

% Load as many values as possible in working memory (work_mem)
« Build a priority queue using a heap

s Extract Lowest value and output to a sorted “run”

Replacement Selection: Generate Runs

F C B D A B

Replacement Selection: Generate Runs

F C B D A B G C
C
F D
B

% Load next value from input stream to replace value that was output to run

Replacement Selection: Generate Runs

F C B D A B G C
C
F D
B C

% Load next value from input stream to replace value that was output to run

% Output new lowest value to sorted run

Replacement Selection: Generate Runs

F C B D A B G C

% We see that it’s “too late” for A as we have already output values later than A.

% Instead we must save A for later and output A in a later run

Replacement Selection: Generate Runs

F C B D A B G C

/

% We see that it’s “too late” for A as we have already output values later than A.

% Instead we must save A for later and output A in a later run

Replacement Selection: Generate Runs

L X

R/
L 44

K/
X4

C B D A B G C
D
F A®@
C D

We see that it's “too late” for A as we have already output values later than A.
Instead we must save A for later and output A in a later run

Continue outputting values for the current sorted run

Replacement Selection: Generate Runs

F C B D A B G C
F
B® AQ
B C D F

% We see that it’s “too late” for A as we have already output values later than A.
% Instead we must save A for later and output A in a later run
% Similarly we must save B for run 2

s But we can still output F in this run

Replacement Selection: Generate Runs

C B D A B G C
G
B® AQ@
C D F G

We see that it's “too late” for A as we have already output values later than A.
Instead we must save A for later and output A in a later run

Similarly we must save B for run 2

But we can still output F in this run

And we can see that G is still not too late for current run

Replacement Selection: Generate Runs

F C B D A B

@A

s Eventually all values are saved for run 2

% Output lowest value in new sorted run

Replacement Selection: Generate Runs

OO

—
AQ
B® c®
C D G
\ A

Replacement Selection: Generate Runs

F C B D A B G C
B o D F G AQ
C F A® B® AQ |B@ AQ@ BQ c@

B
A

OO

Replacement Selection: Merge Runs

@ B C D F G

@ABD
@HJK

L]

% We must then merge many sorted runs into longer sorted runs

Replacement Selection: Merge Runs

@ B C D F G

BD HO

% We must then merge many sorted runs into longer sorted runs
% We load first element from sorted runs into priority queue (heap)

< We mark each element with which run it came from

Replacement Selection: Merge Runs

@ B c D F G
@ A B D
@ H J K

A@

BDO HO®
I

v

A

% Output lowest value to merged run

Replacement Selection: Merge Runs

@ B C D F G

@ABD
@HJK

L]

BO
B | H®

A

% Output lowest value to merged run

% Replace value with next value from the same run

Replacement Selection: Merge Runs

@ B C D F G

@ABD
@HJK

L]

BO
B | H®

/

A B

L)

% Repeat outputting lowest value and replacing with next value from that sorted run

Replacement Selection: Merge Runs

@ B C D F G

o0

B@
C® HO

e

A B B

K/
L 44

Repeat outputting lowest value and replacing with next value from that sorted run

Replacement Selection: Merge Runs

@ B C D F G

@ABD
@HJK

L]

A B B C

L)

% Repeat outputting lowest value and replacing with next value from that sorted run

Replacement Selection: Merge Runs

G

AQ BD B® ol
BD H® B® HB® | Ccd® HBR®| c@® | HB

l B// B‘/C‘{ D

% This generates a longer sorted run containing all the elements from the runs we merged

A F G

% Repeat this process recursively until there’s only a single long sorted run remaining with all data

Replacement Selection: Merge Scheduling

: ‘.ﬁ".‘.".".".'r.".'&".'s".".'s"n“.'s".U.".'l.‘t.'i.", e S I .____— :
1 = g mﬁmwmw

?1 ot g.-‘r,»f:f.’ﬁ.‘*“"-.‘."’"‘.‘fﬁ

Wamm Tl]

AR AR R A

e e

“'.yl".r-.'-.-\._"*_—"&"-

e e PR e e e M
PR ! B MR R

% Knuth dedicated a special pull-out section of his book to various orders in which to merge runs

% Each of these is a different strategy with different advantages and disadvantages
% Some depend on being able to read tapes backwards or have an operator change tapes

% They all assume you have a small fixed number of tape drives

PostgreSQL 6.2 to 7.0 -- Two years go by

?7?7?

PostgreSQL 9.5

PostgreSQL 9.4

PostgreSQL 9.3

PostgreSQL 9.2

PostgreSQL 9.1

PostgreSQL 9.0

PostgreSQL 8.4

PostgreSQL 8.3

PostgreSQL 8.2

PostgreSQL 8.1

PostgreSQL 8.0

PostgreSQL 7.4

PostgreSQL 7.3

PostgreSQL 7.2

PostgreSQL 7.1

PostgreSQL 7.0

it

eSQL 6.4

eSQL 6.3

PostgreSQL 6.2

PostgreSQL 6.1

PostgreSQL 6.0

Postgres95

Future

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

PostgreSQL 7.0 - Major rewrite of psort. turns it into tuplesort.c

commit db3c4c3a2d980dcdd9al9feeddd11230587£0d421
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Wed Oct 13 15:02:32 1999 +0000

Split 'BufFile' routines out of fd.c into a new module, buffile.c. Extend

BufFile so that it handles multi-segment temporary files transparently.

This allows sorts and hashes to work with data exceeding 2Gig (or whatever

the local limit on file size is). Change psort.c to use relative seeks

instead of absolute seeks for backwards scanning, so that it won't fail
when the data volume exceeds 2Gig.

Tom Lane

© David Wheeler (CC BY-NC-SA 2.0)

o V|T| D o o o) o |0 o e o o e o o o o o o o)
o ololo||g o o o o ol|o o olla o o o o o o o o o N
(2] (2] n (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (7] (2] (2] -
a 2o R O I I a a a al1a @ 2114 @ a a o a a a a a
< SISIS|IS]|IS < < < |15 < S5 < < =] < < < < < <
® ololo ||l o) o o o | o© o||l@ o© o o o o 9] o© o @
CU’D DR (%] » (7] (7] » [0 M%) (%] » (7] (%] » (7] (%] » (7] (%] » (7]
1533 QIO o] o o o [SR §) o oo o 3] o o [3) o o [3) o
[l Eall Eall Bl [[r il r || r [[r r [r r [
QN0 [o] [I B N nd I N © || ® ® © *® © © © © © ©
o|l=|N||w] > & o - N | w EN o||= o w EN =} - (N w EN o

G661
9661
1,661
8661
6661
000¢
100¢
¢00¢
€00¢
¥00¢Z
G00c
900¢
100¢
800¢
600¢
0102
LL0¢C
A4
€1L0¢
¥10Z
GgL0¢
910¢
ainn4

https://www.flickr.com/photos/theory/3596711235
https://www.flickr.com/photos/theory/3596711235

PostgreSQL 7.0 - Reuse space aggressively

commit 957146dcec9cc2fb31220c26c51802623df04e5e
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Sat Oct 16 19:49:28 1999 +0000

Second phase of psort reconstruction project: add bookkeeping logic to
recycle storage within sort temp file on a block-by-block basis. This
reduces peak disk usage to essentially just the volume of data being
sorted, whereas it had been about 4x the data volume before.

Tom Lane

© David Wheeler (CC BY-NC-SA 2.0)

o V|T| D o o o) o |0 o e o o e o o o o o o o)
o ololo||g o o o o ol|o o olla o o o o o o o o o N
(2] (2] n (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (7] (2] (2] -
a 2o R O I I a a a al1a @ 2114 @ a a o a a a a a
< SISIS|IS]|IS < < < |15 < S5 < < =] < < < < < <
® ololo ||l o) o o o | o© o||l@ o© o o o o 9] o© o @
CU’D DR (%] » (7] (7] » [0 M%) (%] » (7] (%] » (7] (%] » (7] (%] » (7]
1533 QIO o] o o o [SR §) o oo o 3] o o [3) o o [3) o
[l Eall Eall Bl [[r il r || r [[r r [r r [
QN0 [o] [I B N nd I N © || ® ® © *® © © © © © ©
o|l=|N||w] > & o - N | w EN o||= o w EN =} - (N w EN o

G661
9661
1,661
8661
6661
000¢
100¢
¢00¢
€00¢
¥00¢Z
G00c
900¢
100¢
800¢
600¢
0102
LL0¢C
A4
€1L0¢
¥10Z
GgL0¢
910¢
ainn4

https://www.flickr.com/photos/theory/3596711235
https://www.flickr.com/photos/theory/3596711235

PostgreSQL 7.0 - General purpose module for queries and index builds

commit 26c48b5e8cffafaf3b8acf345ca%9fd8ale408a54
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Sun Oct 17 22:15:09 1999 +0000

Final stage of psort reconstruction work:
a generalized module 'tuplesort.c'

replace psort.c with

that can sort either HeapTuples or

IndexTuples, and is not tied to execution of a Sort node. Clean up

memory leakages in sorting, and replace nbtsort.c's private implementation
of mergesorting with calls to tuplesort.c.

Tom Lane

© David Wheeler (CC BY-NC-SA 2.0)

o V|T| D o o o) o |0 o e o o e o o o o o o o)
o ololo||g o o o o ol|o o olla o o o o o o o o o N
(2] (2] n (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (7] (2] (2] -
a 2o R O I I a a a al1a @ 2114 @ a a o a a a a a
< SISIS|IS]|IS < < < |15 < S5 < < =] < < < < < <
® ololo ||l o) o o o | o© o||l@ o© o o o o 9] o© o @
CU’D DR (%] » (7] (7] » [0 M%) (%] » (7] (%] » (7] (%] » (7] (%] » (7]
1533 QIO o] o o o [SR §) o oo o 3] o o [3) o o [3) o
[l Eall Eall Bl [[r il r || r [[r r [r r [
QN0 [o] [I B N nd I N © || ® ® © *® © © © © © ©
o|l=|N||w] > & o - N | w EN o||= o w EN =} - (N w EN o

G661
9661
1,661
8661
6661
000¢
100¢
¢00¢
€00¢
¥00¢Z
G00c
900¢
100¢
800¢
600¢
0102
LL0¢C
A4
€1L0¢
¥10Z
GgL0¢
910¢
ainn4

https://www.flickr.com/photos/theory/3596711235
https://www.flickr.com/photos/theory/3596711235

PostgreSQL 7.0 to 8.2 -- Six years go by!

?7?7?

PostgreSQL 9.5

PostgreSQL 9.4

PostgreSQL 9.3

PostgreSQL 9.2

PostgreSQL 9.1

PostgreSQL 9.0

PostgreSQL 8.4

PostgreSQL 8.3

PostgreSQL 8.2

PostgreSQL 7.0

PostgreSQL 6.5

PostgreSQL 6.4

PostgreSQL 6.3

PostgreSQL 6.2

PostgreSQL 6.1

PostgreSQL 6.0

Postgres95

Future

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2000

1999

1998

1997

1996

1995

PostgreSQL 8.2 - Virtual Tape Drives Are Cheaper than Real Drives

G6s2IBIs0g |

G661

9661

ER— T

09 TOSa461s0d

1'9 TOS8Ibisod
Z'9 Toseibisod

1,661

ioniggs

© Alvaro Herrera (CC BY-NC-SA 2.0

£'9 Toseibisod

8661

1’9 TosaIBisod

6661

5’9 Tosaibisod

000¢

02 Toseibisod

commit df700e6b40195d28dc764e0c694ac8cef90d4638
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Sun Feb 19 05:54:06 2006 +0000

Improve tuplesort.c to support variable merge order. The original coding
with fixed merge order (fixed number of "tapes") was based on obsolete
assumptions, namely that tape drives are expensive. Since our "tapes"
are really just a couple of buffers, we can have a lot of them given
adequate workspace. This allows reduction of the number of merge passes
with consequent savings of I/O during large sorts.

Simon Riggs with some rework by Tom Lane

T T| T Y o o Y) he)) o o Y) o
o o lo o [e] o o o o] o o o o o
| |a|e @ e|le 2 @ el |2 @ @ 2 @ @
< g1 < RN < < < < < < < < <
(] o | D (] 0] (] () 0] [] (]] [] (]] []
(%2} [0 N} (%2} n N (%2} 0 N (%2} 0 (72} (%2 0 (72}
ol |e]o o) ofle o) Is) of| |© 0 o) o) o) o)
— [L [— — — — — — — — - [—
NENB ~ o || ® ® @| |o© © © © © ©
- N]lw L o - N w S~ o - N w » [$)]

L00C

¢00¢
€00¢
¥00¢
Ggooc
900¢
1,00¢
800¢
600¢
010¢
LL0c
43014
€10¢
¥10¢
Ggloc
910¢

&éd

aining

https://www.flickr.com/photos/theory/3596711235
https://www.flickr.com/photos/alvherre/
https://flic.kr/p/q9sNo
https://www.flickr.com/photos/theory/3596711235

PostgreSQL 8.3 - “External Merge” saves a round trip to disk

G6s2IBIs0g |

—_—
©
©
93]

9661

© Oleg Bartunov

09 TOSa461s0d

1'9 TOS8Ibisod

1,661

Z'9 Toseibisod

€9 Tosaubisod

8661

gory Stark

'9 Toselbisod

6661

5'9 Toseibisod |

000¢

commit 2415ad983174164f£30ce487c0e6b4b53321b83a
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Mon May 21 17:57:35 2007 +0000

02 Toseibisod

Teach tuplestore.c to throw away data before the "mark" point when the caller

is using mark/restore but not rewind or backward-scan capability. Insert a

materialize plan node between a mergejoin and its inner child if the inner

child is a sort that is expected to spill to disk. The materialize shields
the sort from the need to do mark/restore and thereby allows it to perform
its final merge pass on-the-fly; while the materialize itself is normally

cheap since it won't spill to disk unless the number of tuples with equal
key values exceeds work mem.

Greg Stark, with some kibitzing from Tom Lane.

T T| T Y o o Y) he)) o o Y) o
o o1l10 o o] [e] o o [e] o] [e] o o] [e]
2| 2|2 2 2|la 2 @ 2| |2 2 2 2 2 2
gl lgle| |g gl|e| |& g sllel 1€ |1g| | g g
[¢] (o} K 0] D @ [¢] D @ [¢] D @ [¢] D @
(%2} [0 N} (%2} (] N (%2} 0 N (%2} 0 (72} (%2 0 (72}
o| [2]e o) oflo o) 0 o| |© Is) 0 0 o) 0
— [L [— — — — — — — — — [—
N3] ~ @ || % ® @ |© © © © © ©
- N]lw L o - N w S~ o - N w » [$)]

L00C

¥00¢
Ggooc

¢00¢
€00¢
900¢
1,00¢
800¢
600¢
0Lo¢c
LL0c
43014
€10¢
v10¢
G1L0¢
910¢

&éd

aining

https://www.flickr.com/photos/obartunov/

PostgreSQL 8.3 - Top-N sorting

G6s2IBIs0g |

G661

9661

© Oleg Bartunov

09 TOSa461s0d

1'9 TOS8Ibisod

1,661

Z'9 Toseibisod

€9 Tosaubisod

8661

'9 Toselbisod

6661

5'9 Toseibisod |

000¢

02 Toseibisod

commit d26559db£356736923b26704ce76ca820ff3a2b0
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Fri May 4 01:13:45 2007 +0000

1', Tosaibisod

L00C

Teach tuplesort.c about "top N" sorting,

in which only the first N tuples
need be returned.

We keep a heap of the current best N tuples and sift-up
new tuples into it as we scan the input. For M input tuples this means
only about M*log(N) comparisons instead of M*log (M), not to mention a lot
less workspace when N is small --- avoiding spill-to-disk for large M

is actually the most attractive thing about it. Patch includes planner

and executor support for invoking this facility in ORDER BY ... LIMIT
queries. Greg Stark, with some editorialization by moi.

T| T Y o o Y) he)) o o Y) o I
o1l10 o o] [] o o [e] o] [e] o o] [e] -~
@|a @ e|le 2 @ el |2 @ @ 2 2 @ 3
g 1< < <114 < g < = = = = = =

(o} K 0] D [¢] [¢] D @ [¢] D @ [¢] D @

DO (%2} (] N (%2} 0 N (%2} 0 (72} (%2 0 (72}

olo s) oo s) 0 ol |o Is) o) o) Is) o)

[L [— — — — — — — — — [—

B ~ ®||® ® @ @| |o© © © © © ©

N w ~ o N N w i o N) w ~ o

¢00¢
€002
¥00¢
Ggooc

900¢
100¢
800¢
600¢
0102
LL0¢C
A4
€1L0¢
¥10Z
GgL0¢
910¢
ainn4

https://www.flickr.com/photos/obartunov/

PostgreSQL 8.3 to 9.2 -- Four years go by...

27?7
_ ° Future

| PostgresaL 9.5

2016
2015

_ PostgreSQL 9.4
2014

_ PostgreSQL 9.3
2013

PostgreSQL 9.2
2012
2011
ey B
2009
2008
2007

PostgreSQL 8.2
2006

| PostgresalL 8.1
_ PostgreSQL 8.0 2005
_ PostgreSQL 7.4 2004
2003

PostgreSQL 7.3
PostgreSQL 7.2 2002

_ PostgreSQL 7.1
2001

| PostgresaL 7.0
2000

| PostgresaL 6.5
_ PostgreSQL 6.4 1999
| PostgresaL 6.3 1998

PostgreSQL 6.2
PostgreSQL 6.1 1997

PostgreSQL 6.0
1996

Postgres95

1995

PostgreSQL 9.2 - SortSupport

commit c6e3acllb60ac4a8942ab9%964252d51cl1c0bd8845
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Wed Dec 7 00:18:38 2011 -0500

Create a "sort support" interface API for faster sorting.

This patch creates an API whereby a btree index opclass can optionally

provide non-SQL-callable support functions for sorting. In the initial

patch, we only use this to provide a directly-callable comparator function,
which can be invoked with a bit less overhead than the traditional

i) SQL-callable comparator.

(e
‘»J(”g

i

While that should be of value in itself, the real
reason for doing this is to provide a datatype-extensible framework for
more aggressive optimizations, as in Peter Geoghegan's recent work.

:/‘)()>\\4Jl\t"
A\

i)

i

A\
\
|\W\\\\\\)

Peter Geoghegn Robert Haas and Tom Lane

© Oleg Bartunov

G6s2IBIs0g |
&éé

09 TOSa461s0d
1'9 TOS8Ibisod
Z'9 Toseibisod
£'9 Tosaibisod
'9 Toselbisod
5’9 Tosaibisod
02 Toseibisod
L', TOseibisod
Z', Toseibisod
€'/ Tosaibisod
v, ToseiBisod
08 Toseibisod
1’8 Toseubisod
'8 Toseibisod
¢'g Toseibisod

2'6 Tosaibisod
£'6 Toseibisod
¥'6 TOS@IB}sOd
5'6 Tosaibisod

L00C

RN LN — — — N
© (o} Lo} Lo} Lo} o
© Lo} O © O o
(S} » ~ (o8] © o

¢00¢
€00¢
¥00¢
G00c
900¢
100¢
800¢
600¢
oLoc
LL0¢C
A4
€1L0¢
¥10¢
GgL0¢
910¢
ainmn4

https://www.flickr.com/photos/obartunov/

G6s2IBIs0g |

,.Jg
W
e

Peter Geoghegan

© Oleg Bartunov

09 TOSa461s0d

1'9 TOS8Ibisod

Z'9 Toseibisod

€'9 TOSaIbisod

‘S\\\\\\
i

'9 Toselbisod |

5'9 Toseibisod |

PostgreSQL 9.2 - Specialized quicksorts with inlined comparators

commit 337b6£5ecf05b21b5e997986884d097d60ed4e3d0
Author: Robert Haas <rhaas@postgresql.org>
Date: Wed Feb 15 12:13:32 2012 -0500

0’2 Tosaibisod |

Speed up in-memory tuplesorting.

Per recent work by Peter Geoghegan, it's significantly faster to

tuplesort on a single sortkey if ApplySortComparator is inlined into

quicksort rather reached via a function pointer. It's also faster

in general to have a version of quicksort which is specialized for

sorting SortTuple objects rather than objects of arbitrary size and
type. This requires a couple of additional copies of the quicksort
logic, which in this patch are generate using a Perl script. There
might be some benefit in adding further specializations here too,

but thus far it's not clear that those gains are worth their weight
in code footprint.

L', TOseibisod
Z', Toseibisod
€'/ Tosaibisod
v, ToseiBisod
08 Toseibisod
1’8 Toseubisod
'8 Toseibisod
¢'g ToSeIbisod
'8 TosaIBIsod
0'6 ToSeIbisod
1'6 TOSeI6is0d
2’6 Tosaibisod
£'6 Toseibisod

6 TOSeIbIsod

5'6 Tosaibisod

&éd

G661

9661

1,661

8661

6661

000¢

L00C

¢00¢
€002
002
Ggooc
9002
£00¢
800¢

600¢
010¢
LL0c
43014
€10¢
¥10¢

G1L0¢

910¢

aining

https://www.flickr.com/photos/obartunov/

PostgreSQL 9.3 - Use all of work_mem for large sorts

G6s2IBIs0g |

—_—
©
©
a1

9661

09 TOSa461s0d

1'9 TOS8Ibisod

1,661

Z'9 Toseibisod

£'9 Toseibisod

8661

'9 Toselbisod

6661

5’9 Tosaibisod

000¢

commit 8ae35e91807508872cabd3b0e8db35fc78el94ac
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Thu Jan 17 13:12:14 2013 -0500

02 Toseibisod

Improve memory space management in tuplesort and tuplestore.

The code originally just doubled the size of the tuple-pointer array so
long as that would fit in allowedMem.
as much as half of allowedMem, if (as is typical) the last doubling attempt
didn't quite fit. Worse, we might double the array size but be unable to
use most of the added slots, because there was no room left within the
allowedMem limit for tuples the slots should point to. To fix, double only
so long as we've used less than half of allowedMem in total. Then do one
more array enlargement, but scale it based on total memory consumption so
far. This will work nicely as long as the average tuple size is reasonably
stable, and in any case should be better than the old method.

This could result in failing to use

T T| T Y o o Y) he)) o o Y) o
o [e3 Ne] o o o o o o] o o (] o o
| |a|e @ e|le 2 @ el |2 @ @ 2 @ @
< <1< < RN < < < < < < < < <
(] o | D (] 0] (] (] 0] [] (]] [] ()] []
(%2} [0 N} (%2} (] N (%2} (] N (%2} 0 (72} (%2} 0 (72}
o| [2]e o) oflo o) Is) o| |© Is) o) o) Is) o)
— [L [— — — — — — — — — [—
NENB ~ ®||® ® ® @| |o© © © © © ©
- N]lw L o - N w S~ o - N w » [$)]

L00C

Ggooc
9002

¢00¢
€00¢
¥00¢
1,00¢
800¢
600¢
010¢
LL0c
43014
€10¢
¥10¢
Ggloc
910¢

&éd

aining

PostgreSQL 9.3 - Allow using more than 2GB for sorts

G6s2IBIs0g |

09 TOSa461s0d

1'9 TOS8Ibisod

Z'9 Toseibisod

£'9 Tosaibisod |

'9 Toselbisod |

5'9 Toseibisod |

commit 263865a48973767ce8ed7b7788059a38a24a9£37
Author: Noah Misch <noah@leadboat.com>
Date: Thu Jun 27 14:53:57 2013 -0400

0’2 Tosaibisod |

Permit super-MaxAllocSize allocations with MemoryContextAllocHuge() .

The MaxAllocSize guard is convenient for most callers, because it
reduces the need for careful attention to overflow, data type selection,
and the SET VARSIZE() limit. A handful of callers are happy to navigate
those hazards in exchange for the ability to allocate a larger chunk.
Introduce MemoryContextAllocHuge() and repalloc_huge(). Use this in
tuplesort.c and tuplestore.c, enabling internal sorts of up to INT MAX
tuples, a factor-of-48 increase. In particular, B-tree index builds can
now benefit from much-larger maintenance_work mem settings.

Reviewed by Stephen Frost, Simon Riggs and Jeff Janes.

L', TOseibisod
Z', Toseibisod
€'/ Tosaibisod
v, ToseiBisod
08 Toseibisod
1’8 Toseubisod
'8 Tosaibisod
¢'g Tosalbisod
'8 TosaIBIsod
0'6 ToSeIbisod
1'6 TOSeI6is0d

2'6 Tosaibisod
£'6 Toseibisod
6 TOSeI61s0d

5'6 Tosaibisod

&éd

G661

9661

1,661

8661

6661

000¢

L00C

¢00¢
€00¢
¥00¢
Ggooc
9002
1,00¢
800¢
600¢
010¢
LL0c
43014
€10¢
¥10¢
Ggloc

910¢

aining

PostgreSQL 9.5 - Quicksort specializations with inlined comparators

commit 4ea5lcdfe85ceef8afabceb03c446574daalac23
Author: Robert Haas <rhaas@postgresql.org>
Date: Mon Jan 19 15:20:31 2015 -0500

Use abbreviated keys for faster sorting of text datums.

This commit extends the SortSupport infrastructure to allow operator
classes the option to provide abbreviated representations of Datums;
in the case of text, we abbreviate by taking the first few characters
of the strxfrm() blob. If the abbreviated comparison is insufficent
to resolve the comparison, we fall back on the normal comparator.
This can be much faster than the old way of doing sorting if the

first few bytes of the string are usually sufficient to resolve the

AU

\

D) ;V'\“
Sk

) I comparison.
Peter Geoghegan
© Oleg Bartunov

I - — I o I I . I I

o v|lo|o||D||D o o T u|D T u||lD T o o T o o o

o olo|o o o o o o (o3 Nl o o o o o o o o o o

e eleljellef|lal |2 (2] (2] (2|2 @ @l @ @ el |2 @ e e @

< clElsl1S]|s < < < <1< < RN < < < < < < < <

[o|lo |® [0} [} () [0} [} o | D [} [} () [} [0} () [} [} () [0} [}

@ olo|lo||lo||o 149 10y 1) | 10 ol|lo 10 » 10y 10 0 14, 10 0

1533 QIO o] o o o [SR §) o oo o 3] o o [3) o o [3)
[M — [— — — [L [— — — — — — — — - [
QN0 [o] [I N N nd I N © || ® ® © *® © © © © ©
ol=IN w L (&)} o - N]lw L o - N w S~ o - N w L

RN LN — — — N N N
© (o} Lo} Lo} Lo} o o o
© Lo} O © O o (= o
(S} » ~ (o8] © o - N

€00¢
¥00¢
Ggooc
900¢
1,00¢
800¢
600¢
010¢
LL0c
43014
€10¢
¥10¢
Ggloc

6’6 TOSaIbis0d

910¢

&éd

aining

https://www.flickr.com/photos/obartunov/

Abbreviated Keys For Text Data

strcoll ("Oner Bapryuor", "Marnyc Xaraupep'") == 3

=> "Oner BapTyHOB" > "Marunyc Xaraupgep"

% strcoll can be very slow because comparison rules can be very complicated

% Even when comparing ASCII it is much slower than integer comparisons

strxfrm("Oner BapTyHOB")
=> C393C38EC382C2BEC2BCC2BBC395C397C39AC391C393C2BDO1. ..
strxfrm("Maruyc Xaraunpep")

=> C390C2BBC2BEC391C39AC396C39DC2BBC2BEC2BBC391C2BFC3...

% Result from strxfrm can be compared quickly using memcmp

s Butresult can be very large which requires more memory and disk

Abbreviated Keys For Text Data

% Use first 8 bytes (4 bytes on 32-bit platforms) as integer for fast comparisons

strxfrm("Oner BapTyHOB")

=> C393C38EC382C2BEC2BCC2BBC395C397C39AC391C393C2BDO1. ..
strxfrm("Marunyc Xaraagep'")

=> C390C2BBC2BEC391C39AC396C39DC2BBC2BEC2BBC391C2BFC3..
0xC393C38EC382C2BE > 0xC390C2BBC2BEC391

=> TRUE

% When two strings start with similar prefixes then the integers may be equal

% Call strcoll to disambiguate these cases

G661

What lies ahead? Hardware evolution driving major changes in algorithm choices:

e Quicksort to generate runs instead of Replacement Selection
o Quicksort is cache oblivious and CPU cache is much more important in modern CPUs

As main memory grows the number of tapes we can handle increases proportionally and the number of runs decreases proportionally.
So the number of merges decreases quadratically. It's less important to use a heap to maximize the run length.

e Parallel Sort

o Modern hardware is scaling by adding CPUs faster than by increasing clock speeds.
Infrastructure for parallel query is already committed and can be used for sorting.

e Using SIMD instructions (MMX/SSE/AVX)
o Most operators limited to floats but recently more general purpose (integer) vector operations have been supported
Registers keep increasing in size -- the next generation of CPUs will have 512 byte registers which may be sufficient

e Using a GPU to sort using OpenCL or CUDA

o Quicksort unsuitable -- Radixsort or Bitonic sort would be needed
o https://wiki.postgresql.org/wiki/PGStrom

o

(e]

o

G6s2IBIs0g |

V|| T0|| 0|0 o o T T| T Y V(|0 Y) he)) o o Y) o =9
olol]o|]|]Oo]|]|©O o] o [e3 Ne] o (o3 I] o o o] o o o o o -~
elelaflelleal |2| 2| |2| (2|2 @ e|le 2 @ el |2 @ @ 2 2 2 A
Qo |ll|le ||l «Q «Q «Q Q |Q «Q Q | |Q «Q «Q «Q «Q «Q «Q «Q «Q «Q
sla|d||a]|]|a I @ @ ol @ || @ @ I @ o I @ @ I
DI |R||R N «n (%2} [0 N} (%2} DD (%2} (] N (%2} 0 (72} (%2 0 (72}
olelol|ellel |2l |el| |el| |elo o) oflo o) Is) o| |© Is) o) o) Is) o)
Lt I i I I O i O O — — — [L [||~ — — — — — — — [—
(o2 o>l Il I Il BN el (o] ~ ~ NN ~ @ || [ee] [o2] o] © © © © © ©
o|lS[nlell~] o] [of |2] [S]e N o||= R w ~| |o = N P N o
S 2 NNRNNDRNNDORNDNDORNDNONDNONODN NN N MM
© © © © O O O O O O O O © O o o o o o o o c
© © © © © o 9O 9 © o o © o 9 = =2 3 = I 2 =
® N ® © & = N © & & & N ©o © o =~ N w » oo o §
o

https://wiki.postgresql.org/wiki/PGStrom
https://wiki.postgresql.org/wiki/PGStrom

