

Contents

Welcome to Paul’s Boutique ! 1
The Story . . o o e e e e e e e 2
Objectives o e e e e e e e e 3
About PostgreSQLANONYMIZEr o o v e e e e e e e e e e 3
AbOUt GDPR e e e 4
Requirements L e e e e e e e e e 4
TheRoles e e 5
TheSampledatabase. e e 6
Authors . . . L 6
License L e e e 6
Credits o o e e 6

1 - Static Masking 7
The story . . o o o e e e e e e e e e e 7
Howitworks o e 7
Learning Objective L L e 7
The “customer”table e 8
The “payout”table e e 8
Activatetheextension L 9
Declarethe maskingrules e 9
Applytherulespermanently e 9
EXErcices e e 10

E101- Mask theclient’sfirstnames o 10
E102 - Hide the last 3 digits of thepostcode 10
E103 - Count how many clients live in each postcodearea? 10
E104 - Keep only theyear of each birthdate 10
E105-Singlingoutacustomer L L . 11
Solutions L e e e e e e e 12
SI101 . . . e e e e e e e e e e e e e e e 12
S102 . . o e e e e e e e e e e e e 12
S103 . . e e e e 12

Feb. 2023 Data Masking with PostgreSQL Anonymizer

S104 . . . e e e e e e e e e e 13
S105 . . . e e e e e e e e e e e e e 13

2- How to use Dynamic Masking 15
The Story . . o o e e e e e e e e e e 15
Howitworks o e 15
Objectives o e e e e e e e e 15
The “company”table e e e 16
The "supplier”’table e e e e e 16
Activatetheextension L 17
DynamicMasking e 17
Activate the maskingengine L L 17
Maskingarole 17
Masking the suppliernames L 18
EXErcices e e 19
E201 - Guess who is the CEO of "Johnny's Shoe Store” 19

E202 - Anonymizethe companies Lo 19

E203 - Pseudonymizethe companyname 0. 19
Solutions L e e e e e e e e 20
S201 . . . e e e e e e e e e e e e 20
S202 . . e e e e e e e e e e e e 20
S203 . L e e e e e e e e e e e 21

3- Anonymous Dumps 23
The Story . . . o e e e e e e e 23
Howitworks o e 23
Learning Objective L L e 23
Loadthedata o e 24
Activatetheextension L 24
Maskinga JSON column e 25
EXErcices e e e 26
E301-Dump the anonymized dataintoanewdatabase 26

E302 - Pseudonymize the meta fields of thecomments 27
Solutions L e e e e e e 27
S301 . . . e e e e e e e e e e e e e 27
S302 . e e e e e e e e e e e e 27

4 - Generalization 29
The Story . . . o o e e e e e e e 29

ii DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

Howitworks e e 29
Learning Objective 29
The ”employee”table e e e e 30
Data sSUPPressioN o o i e e e e e e e e e e e e e e e e 31
K-Anonymity o o e e e e e e e e e e e e e e 32
Range and Generalizationfunctions L Lo oo 32
Declaring theindirectidentifiers 33
EXErcices e e 34
E401 - Simplify v_staff_per_month and decrease granularity 34

E402 - Staff progression overtheyears 34

E403 - Reaching 2-anonymity forthe v_staff_per_yearview 34
Solutions L e e e e e e e e e 34
SA01 . . L e e e e e e e e 34

SA02 . e e e e e e e e e e e e e 35

SA03 . L e e e e e e e e e e 35
Conclusion 37
Cleanup !l . . . e e e e e e e 37
Many Masking Strategies 38
Many Masking Functions e e 38
Advantages e e e 38
Drawbacks e 39
AlSO... . . 39
HelpWanted! e e e e 39
Thisisa4 hourworkshop! e 39
QuestioNs? . . L L e e e e e e 40

DALIBO iii

Welcome to Paul’s Boutique !

Thisisa4hoursworkshop that demonstrates various anonymization techniques using the PostgreSQL
Anonymizer! extension.

Thttps://labs.dalibo.com/postgresql_anonymizer

https://labs.dalibo.com/postgresql_anonymizer

Feb. 2023 Data Masking with PostgreSQL Anonymizer

The Story

e ——

Figure 1: Paul’s boutique

Paul’s boutique has a lot of customers. Paul asks his friend Pierre, a Data Scientist, to make some
statistics about his clients : average age, etc...

Pierre wants a direct access to the database in order to write SQL queries.

2 DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

Jack is an employee of Paul. He’s in charge of relationship with the various suppliers of the shop.

Paul respects his suppliers privacy. He needs to hide the personnal information to Pierre, but Jack
needs read and write access the real data.

Objectives

Using the simple example above, we will learn:

- How to write masking rules
- The difference between static and dynamic masking
- Implementing advanced masking techniques

About PostgreSQL Anonymizer

PostgreSQL
Anonymizer

postgresql_anonymizer isan extension to mask or replace personally identifiable information?
(PIl) or commercially sensitive data from a PostgreSQL database.

The project has a declarative approach of anonymization. This means you can declare the masking
rules® using the PostgreSQL Data Definition Language (DDL) and specify your anonymization strategy
inside the table definition itself.

Zhttps://en.wikipedia.org/wiki/Personally_identifiable_information
3https://postgresql-anonymizer.readthedocs.io/en/stable/declare_masking_rules

DALIBO 3

https://en.wikipedia.org/wiki/Personally_identifiable_information
https://postgresql-anonymizer.readthedocs.io/en/stable/declare_masking_rules

Feb. 2023 Data Masking with PostgreSQL Anonymizer

Once the maskings rules are defined, you can access the anonymized data in 4 different ways:

Anonymous Dumps* : Simply export the masked data into an SQL file

Static Masking® : Remove the Pll according to the rules

Dynamic Masking® : Hide PIl only for the masked users

Generalization” Create “blurred views” of the original data

About GDPR

This presentation does not go into the details of the GPDR act and the general concepts of anonymiza-
tion.

For more information about it, please refer to the talk below:

- Anonymisation, Au-dela du RGPD?® (Video / French)
- Anonymization, Beyond GDPR® (PDF / english)

Requirements

In order to make this workshop, you will need:

ALinux VM (preferably Debian 11 bullseyeorUbuntu 22.04)

A PostgreSQL instance (preferably PostgreSQL 14)

The PostgreSQL Anonymizer (anon) extension, installed and initialized by a superuser
A database named “boutique” owned by a superuser called “paul”

Arole “pierre” and a role “jack”, both allowed to connect to the database “boutique”

“https://postgresql-anonymizer.readthedocs.io/en/stable/anonymous_dumps

Shttps://postgresql-anonymizer.readthedocs.io/en/stable/static_masking

Shttps://postgresql-anonymizer.readthedocs.io/en/stable/dynamic_masking

8https://www.youtube.com/watch?v=KGS|p4UygdU

%https://public.dalibo.com/exports/conferences/_archives/_2019/20191016_anonymisation_beyond_GDPR/anonymisa
tion_beyond_gdpr.pdf

4 DALIBO

https://postgresql-anonymizer.readthedocs.io/en/stable/anonymous_dumps
https://postgresql-anonymizer.readthedocs.io/en/stable/static_masking
https://postgresql-anonymizer.readthedocs.io/en/stable/dynamic_masking
https://www.youtube.com/watch?v=KGSlp4UygdU
https://public.dalibo.com/exports/conferences/_archives/_2019/20191016_anonymisation_beyond_GDPR/anonymisation_beyond_gdpr.pdf
https://public.dalibo.com/exports/conferences/_archives/_2019/20191016_anonymisation_beyond_GDPR/anonymisation_beyond_gdpr.pdf

Data Masking with PostgreSQL Anonymizer Feb. 2023

(,7 A simple way to deploy a workshop environment is to install Docker Desktop!® and
- download the image below:

docker pull registry.gitlab.com/dalibo/postgresql_anonymizer:stable

(p) Check out the INSTALL section'! in the documentation'? to learn how to install the ex-
- tension in your PostgreSQL instance.

The Roles

We will with 3 differents users:

CREATE ROLE paul LOGIN SUPERUSER PASSWORD 'CHANGEME';
CREATE ROLE pierre LOGIN PASSWORD 'CHANGEME';

CREATE ROLE jack LOGIN PASSWORD 'CHANGEME';

@ Unless stated otherwise, all commands must be executed with the role pau'l.

Setup a . pgpass file to simplify the connections !

cat > ~/.pgpass << EOL
*:x:boutique:paul:CHANGEME
*:*x:boutique:pierre:CHANGEME
*:x:boutique:jack:CHANGEME
EOL

chmod 0600 ~/.pgpass

DALIBO 5

Feb. 2023 Data Masking with PostgreSQL Anonymizer

The Sample database

We will work on a database called “boutique”:

CREATE DATABASE boutique OWNER paul;

We need to activate the anon library inside that database:

ALTER DATABASE boutique
SET session_preload_libraries = 'anon';

Authors

This workshop is a collective work from Damien Clochard, Be Hai Tran, Florent Jardin, Frédéric
Yhuel.

License

This document is distributed under the PostgreSQL license.
The source is available at

https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to

Credits

- Cover photo by Alex Conchillos from Pexels (CC Zero)
- “Paul’s Boutique” is the second studio album by American hip hop group Beastie Boys, released
on July 25, 1989 by Capitol Records

6 DALIBO

https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to

1 - Static Masking

Static Masking is the simplest way to hide personal information! This idea is simply to destroy
the original data or replace it with an artificial one.

The story

Over the years, Paul has collected data about his customers and their purchases in a simple database.
He recently installed a brand new sales application and the old database is now obsolete. He wants
to save it and he would like to remove all personal information before archiving it.

How it works

Jack
Read
Write
Paul Pierre
O Masking e
Read
an W -
_—
Static
Masking
Learning Objective

In this section, we will learn:

- How to write simple masking rules
- The advantage and limitations of static masking

Feb. 2023 Data Masking with PostgreSQL Anonymizer

- The concept of “Singling Out” a person

The “customer” table

DROP TABLE IF EXISTS customer CASCADE;

DROP TABLE IF EXISTS payout CASCADE;

CREATE TABLE customer (id SERIAL PRIMARY KEY, firstname TEXT, lastname
TEXT, phone TEXT, birth DATE, postcode TEXT);

Insert a few persons:

INSERT INTO customer

VALUES (107, 'Sarah','Conor','060-911-0911', '1965-10-10', '90016'),
(258, 'Luke', 'Skywalker', NULL, '1951-09-25', '90120'),
(341,'Don', 'Draper','347-515-3423', '1926-06-01', '04520') ;

SELECT «*
FROM customer;

id firstname lastname phone birth postcode

107 Sarah Conor 060-911-0911 1965-10-10 90016

258 Luke Skywalker None 1951-09-25 90120

341 Don Draper 347-515-3423 1926-06-01 04520
The “payout” table

Sales are tracked in a simple table:

CREATE TABLE payout (id SERIAL PRIMARY KEY, fk_customer_id INT REFERENCES
customer(id), order_date DATE, payment_date DATE, amount INT);

Let's add some orders:

INSERT INTO payout

VALUES (1,107,'2021-10-01','2021-10-01', '7'),

J J
(2,258,'2021-10-02"','2021-10-03"', '20'),
(3,341, '2021-10-02"','2021-10-02"', '543'),
(4,258,'2021-10-05",'2021-10-05", '12'),
(5,258,'2021-10-06"','2021-10-06", '92') ;

8 DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon CASCADE;
SELECT anon.init();

SELECT setseed(0);

Declare the masking rules

Paul wants to hide the last name and the phone numbers of his clients. He will use the
fake_Tlast_name() and partia’l() functions for that:

SECURITY LABEL
FOR anon ON COLUMN customer.lastname IS 'MASKED WITH FUNCTION anon.
fake_last_name()';

SECURITY LABEL
FOR anon ON COLUMN customer.phone IS 'MASKED WITH FUNCTION anon.partial(
phone,2,$$X-XXX-XX$$,2)";

Apply the rules permanently

SELECT anon.anonymize_table('customer');

anonymize_table

True

SELECT 1d,
firstname,
lastname,
phone

FROM customer;

DALIBO 9

Feb. 2023 Data Masking with PostgreSQL Anonymizer

id firstname lastname phone

107 Sarah Morgan 06X-XXX-XX11
258 Luke Thomas None
341 Don Clarke 34X-XXX-XX23

Thisiscalled Static Maskingbecausetherealdatahasbeen permanently replaced. We'll
see later how we can use dynamic anonymization or anonymous exports.

Exercices

E101 - Mask the client’s first names

Declare a new masking rule and run the static anonymization function again.

E102 - Hide the last 3 digits of the postcode

Paul realizes that the postcode gives a clear indication of where his customers live. However he would
like to have statistics based on their "postcode area”.

Add a new masking rule to replace the last 3 digits by ‘x’.
E103 - Count how many clients live in each postcode area?

Aggregate the customers based on their anonymized postcode.

E104 - Keep only the year of each birth date
Paul wants age-based statistic. But he also wants to hide the real birth date of the customers.

Replace all the birth dates by January 1rst, while keeping the real year.

@ HINT: You can use the make_date! function !

10 DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

E105 - Singling out a customer

Even if the "customer” is properly anonymized, we can still isolate a given individual based on data
stored outside of the table. For instance, we can identify the best client of Paul's boutique with a query
like this:

WITH best_client AS
(SELECT SUM(amount),
fk_customer_-id
FROM payout
GROUP BY fk_customer_id
ORDER BY 1 DESC
LIMIT 1)
SELECT c.x
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id)

id firstname lastname phone birth postcode

341 Don Clarke 34X-XXX-XX23 1926-06-01 04520

o This is called Singling Out? a person.

We need to anonymize even further by removing the link between a person and its company. In the
“order” table, this link is materialized by a foreign key on the field "fk_company_id”. However we
can't remove values from this column or insert fake identifiers because if would break the foreign key
constraint.

How can we separate the customers from their payouts while respecting the integrity of the data?

Find a function that will shuffle the column ”fk_company_id” of the "payout” table

@ HINT: Check out the static masking?® section of the documentation®

DALIBO 11

Feb. 2023 Data Masking with PostgreSQL Anonymizer

Solutions

S101

SECURITY LABEL
FOR anon ON COLUMN customer.firstname IS 'MASKED WITH FUNCTION anon.
fake_first_name()';

SELECT anon.anonymize_table('customer');

SELECT -d,
firstname,
lastname

FROM customer;

$102

SECURITY LABEL
FOR anon ON COLUMN customer.postcode IS 'MASKED WITH FUNCTION anon.partial
(postcode,2,3$$xxx$$,0) ';

SELECT anon.anonymize_table('customer');

SELECT 1d,
firstname,
lastname,
postcode

FROM customer;

$103

SELECT postcode,
COUNT (id)

FROM customer

GROUP BY postcode;

postcode count

90xxX 2

12 DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

postcode count

04xxx 1

S104

SECURITY LABEL
FOR anon ON COLUMN customer.birth IS '"MASKED WITH FUNCTION make_date(
EXTRACT(YEAR FROM birth)::INT,1,1)';

SELECT anon.anonymize_table('customer');

SELECT 1d,
firstname,
lastname,
birth

FROM customer;

a run-postgres: ‘MASKED WITH FUNCTION make_date(EXTRACT(YEAR FROM
birth)::INT,1,1)’ is not a valid masking function

S$105

Let's mix up the values of the fk_customer_id:

SELECT anon.shuffle_column('payout', 'fk_customer_id', 'id');

shuffle_column

True

Now let's try to single out the best client again :

WITH best_client AS
(SELECT SUM(amount),
fk_customer_id
FROM payout
GROUP BY fk_customer_id

DALIBO 13

Feb. 2023 Data Masking with PostgreSQL Anonymizer

ORDER BY 1 DESC
LIMIT 1)
SELECT c.x
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id);

id firstname lastname phone birth postcode

258 Timothy Morris None 1951-09-25 90xxx

WARNING

Note that the link between a customer and its payout is now completely false. For instance, if a
customer A had 2 payouts. One of these payout may be linked to a customer B, while the second one
is linked to a customer C.

In other words, this shuffling method with respect the foreign key constraint (aka the referential in-
tegrity) but it will break the data integrity. For some use case, this may be a problem.

In this case, Pierre will not be able to produce a Bl report with the shuffle data, because the links
between the customers and their payments are fake.

14 DALIBO

2- How to use Dynamic Masking

With Dynamic Masking, the database owner can hide personnal data for some users, while other
users are still allowed to read and write the authentic data.

The Story

Paul has 2 employees:

- Jack is operating the new sales application, he needs access to the real data. He is what the
GPDR would call a ’data processor”.

- Pierre is a data analyst who runs statistic queries on the database. He should not have access

to any personnal data.

How it works

Masking e
Q Rules

Objectives

In this section, we will learn:

Masked

15

Pierre

Masked

Feb. 2023 Data Masking with PostgreSQL Anonymizer

- How to write simple masking rules
- The advantage and limitations of dynamic masking
- The concept of “Linkability” of a person

The “company” table

DROP TABLE IF EXISTS supplier CASCADE;

DROP TABLE IF EXISTS company CASCADE;

CREATE TABLE company (id SERIAL PRIMARY KEY, name TEXT, vat_id TEXT
UNIQUE);

INSERT INTO company

VALUES (952, 'Shadrach', 'FR62684255667'),
(194,E'Johnny\'s Shoe Store','CHE670945644"'),
(346, 'Capitol Records', 'GB663829617823"') ;

SELECT «*
FROM company;

id name vat_id

952 Shadrach FR62684255667
194 Johnny's Shoe Store CHE670945644
346 Capitol Records GB663829617823

The ”’supplier” table

CREATE TABLE supplier (id SERIAL PRIMARY KEY, fk_company_id INT
REFERENCES company(id), contact TEXT, phone TEXT, job_title TEXT);

INSERT INTO supplier
VALUES (299,194, 'Johnny Ryall','597-500-569','CEQ'),
(157,346, 'George Clinton', '131-002-530','Sales manager') ;
SELECT x*
FROM supplier;

16 DALIBO

Data Masking with PostgreSQL Anonymizer

Feb. 2023

id fk_company_id contact phone job_title
299 194 Johnny Ryall 597-500-569 CEO
157 346 George Clinton 131-002-530 Sales manager

Activate the extension

CREATE EXTENSION IF NOT EXISTS anon CASCADE;
SELECT anon.init();

SELECT setseed(0);

Dynamic Masking

Activate the masking engine

SELECT anon.start_dynamic_masking();

start_dynamic_masking

True

Masking arole

SECURITY LABEL
FOR anon ON ROLE pierre IS 'MASKED';

GRANT
SELECT ON supplier TO pierre;

GRANT ALL ON SCHEMA PUBLIC TO jack;

GRANT ALL ON ALL TABLES IN SCHEMA PUBLIC TO jack;

DALIBO

17

Feb. 2023 Data Masking with PostgreSQL Anonymizer

Now connect as Pierre and try to read the supplier table:

SELECT =
FROM supplier;

id fk_company_id contact phone job_title
299 194 Johnny Ryall 597-500-569 CEO
157 346 George Clinton 131-002-530 Sales manager

For the moment, there is no masking rule so Pierre can see the original data in each table.

Masking the supplier names

Connect as Paul and define a masking rule on the supplier table:

SECURITY LABEL
FOR anon ON COLUMN supplier.contact IS 'MASKED WITH VALUE $$CONFIDENTIALSS

L
I

Now connect as Pierre and try to read the supplier table again:

SELECT x*
FROM supplier;

id fk_company_id contact phone job_title
299 194 CONFIDENTIAL 597-500-569 CEO
157 346 CONFIDENTIAL 131-002-530 Sales manager

Now connect as Jack and try to read the real data:

SELECT x*
FROM supplier;

18 DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

id fk_company_id contact phone job_title
299 194 Johnny Ryall 597-500-569 CEO
157 346 George Clinton 131-002-530 Sales manager

Exercices

E201 - Guess who is the CEO of ”Johnny's Shoe Store”

Masking the supplier name is clearly not enough to provide anonymity.

Connect as Pierre and write a simple SQL query that would reindentify some suppliers based on
their job and their company.

Company names and job positions are available in many public datasets. A simple search on Linkedin
or Google, would give you the names of the top executives of most companies..

This is called Linkability: the ability to connect multiple records concerning the same data sub-

ject.

E202 - Anonymize the companies
We need to anonymize the "company” table, too. Even if they don't contain personal information,
some fields can be used to infer the identity of their employees...

Write 2 masking rules for the company table. The first one will replace the ”name” field with a
fake name. The second will replace the ?vat_id” with a random sequence of 10 characters

HINT: Go to the documentation? and look at the faking functions? and random functions!

%https://postgresql-anonymizer.readthedocs.io/en/stable/
bhttps://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#faking
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#randomization

Connect as Pierre and check that he cannot view the real company info:

E203 - Pseudonymize the company name

Because of dynamic masking, the fake values will be different everytime Pierre tries to read the ta-
ble.

DALIBO 19

https://postgresql-anonymizer.readthedocs.io/en/stable/
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#faking
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#randomization

Feb. 2023 Data Masking with PostgreSQL Anonymizer

Pierre would like to have always the same fake values for a given company. This is called
pseudonymization.

Write a new masking rule over the ”vat_id” field by generating 10 random characters using the
md5() function.

Write a new masking rule over the ”name” field by using a pseudonymizing function’.

Solutions

S201

SELECT s.1d,
s.contact,
s.job_title,
C.name
FROM supplier s
JOIN company c ON s.fk_company_id = c.id;

id contact job_title name

299 CONFIDENTIAL CEO Johnny's Shoe Store
157 CONFIDENTIAL Sales manager Capitol Records

$202

SECURITY LABEL
FOR anon ON COLUMN company.name IS 'MASKED WITH FUNCTION anon.fake_company

QR

SECURITY LABEL
FOR anon ON COLUMN company.vat_id IS 'MASKED WITH FUNCTION anon.
random_string(10)';

Now connect as Pierre and read the table again:

SELECT x*
FROM company;

thttps://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#pseudonymization

20 DALIBO

https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#pseudonymization

Data Masking with PostgreSQL Anonymizer Feb. 2023

id name vat_id

952 Armstrong, Hancock and Meyers CNTYL3S6IE
194 Cortez, Moses and Perez TYWYQHAF4G
346 Smith-Anderson OBF6SBXXMT

Pierre will see different "fake data” everytime he reads the table:

SELECT *
FROM company;

id name vat_id

952 Paynelnc Y64ZFFONLS
194 Johnson-Brewer ONAS5IJNSXG
346 Ramirez-Moore JMMGMZU52S

$203

ALTER FUNCTION anon.pseudo_company SECURITY DEFINER;

SECURITY LABEL
FOR anon ON COLUMN company.name IS 'MASKED WITH FUNCTION anon.
pseudo_company (id)';

Connect as Pierre and read the table multiple times:

SELECT *
FROM company;

id name vat_id

952 Wilkinson LLC WE7305512D
194 Johnson PLC GOOBI5ULL4
346 Young-Carpenter QHGXST6KBM

SELECT ~*
FROM company;

DALIBO 21

Feb. 2023

Data Masking with PostgreSQL Anonymizer

id name

952 Wilkinson LLC
194 Johnson PLC

346 Young-Carpenter

Now the fake company name is always the same.

vat_id

K1Z13EGHOM
I850D1RJON
20KIWH321M

22

DALIBO

3- Anonymous Dumps

In many situation, what we want is simply to export the anonymized data into another database
(for testing or to produce statistics). This is what pg_dump_anon does!

The Story

Paul has a website and a comment section where customers can express their views.

He hired a web agency to develop a new design for his website. The agency asked for a SQL export
(dump) of the current website database. Paul wants to "clean” the database export and remove any
personnal information contained in the comment section.

How it works

Jack

O
[

Write
Paul

e

Anonymous

Masking
<:> Rules Dump
N - R »

Learning Objective

- Extract the anonymized data from the database
- Write a custom masking function to handle a JSON field.

Feb. 2023 Data Masking with PostgreSQL Anonymizer

Load the data

DROP TABLE IF EXISTS website_comment CASCADE;

CREATE TABLE website_comment (id SERIAL PRIMARY KEY,
message JSONB);

curl -Ls https://dali.bo/website_comment -o /tmp/website_comment.tsv
head /tmp/website_comment.tsv

COPY website_comment
FROM '/tmp/website_comment.tsv'

SELECT message->'meta'->'name' AS name,
message->'content' AS content

FROM website_comment

ORDER BY -id ASC

name content

Lee Perry Hello Nasty!
Great Shop

Jimmy Hi! Thisis me, Jimmy James

Activate the extension

CREATE EXTENSION IF NOT EXISTS anon CASCADE;
SELECT anon.init();

SELECT setseed(0);

24 DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

Masking a JSON column

The "comment” field is filled with personalinformation and the fact the field does not have a standard

schema makes our tasks harder.
In general, unstructured data are difficult to mask.

As we can see, web visitors can write any kind of information in the comment section. Our best option
is to remove this key entirely because there's no way to extract personnal data properly.

We can clean the comment column simply by removing the "content” key!
SELECT message - ARRAY['content']

FROM website_comment
WHERE id=1;

?column?

{'meta’: {'name’: 'Lee Perry', 'ip_addr'": '40.87.29.113'}}

First let's create a dedicated schema and declare it as trusted. This means the "anon” extension will
accept the functions located in this schema as valid masking functions. Only a superuser should be
able to add functions in this schema.

CREATE SCHEMA IF NOT EXISTS my_masks;

SECURITY LABEL
FOR anon ON SCHEMA my_masks IS 'TRUSTED';

Now we can write a function that remove the message content:

CREATE OR REPLACE FUNCTION my_masks.remove_content(j JSONB) RETURNS JSONB
AS $func$ SELECT j - ARRAY['content'] $func$ LANGUAGE SQL ;

DALIBO 25

Feb. 2023 Data Masking with PostgreSQL Anonymizer

Let's try it!

SELECT my_masks.remove_content(message)
FROM website_comment

remove_content

{'meta’: {'name’: 'Lee Perry', 'ip_addr'": '40.87.29.113'}}
{'meta': {'name': ", 'email": 'biz@bizmarkie.com'}}

{'meta’: {'name’: 'Jimmy'}}

And now we can use it in a masking rule:

SECURITY LABEL
FOR anon ON COLUMN website_comment.message IS 'MASKED WITH FUNCTION
my_masks.remove_content(message)';

Finally we can export an anonymous dump of the table with pg_dump_anon:

export PATH=$PATH:$(pg_config --bindir)
pg_dump_anon —--help

export PATH=$PATH:S(pg_config --bindir)

export PGHOST=1localhost

export PGUSER=paul

pg_dump_anon boutique --table=website_comment > /tmp/dump.sql

Exercices

E301 - Dump the anonymized data into a new database

Create a database named ”boutique_anon” and transfer the entire database into it.

26 DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

E302 - Pseudonymize the meta fields of the comments

Pierre plans to extract general information from the metadata. For instance, he wants to calculate the
number of unique visitors based on the different IP adresses. Butan IP adress is an indirect identifier,
so Paul needs to anonymize this field while maintaining the fact that some values appear multiple
times.

Replace the remove_content function with a better one called clean_comment that will:

Remove the content key

Replace the "name” value with a fake last name

Replace the ”ip_address” value with its MD5 signature

Nullify the "email” key

HINT: Look at the jsonb_set () and jsonb_build_object() functions

Solutions

S301

export PATH=$PATH:$(pg_config --bindir)

export PGHOST=1localhost

export PGUSER=paul

dropdb --if-exists boutique_anon

createdb boutique_anon --owner paul

pg_dump_anon boutique | psql --quiet boutique_anon

export PGHOST=1localhost
export PGUSER=paul
psql boutique_anon -c 'SELECT COUNT(x) FROM company'

$302

CREATE OR REPLACE FUNCTION my_masks.clean_comment(message JSONB) RETURNS
JSONB VOLATILE LANGUAGE SQL AS $func$ SELECT jsonb_set(message, ARRAY[
'meta'], jsonb_build_object('name',anon.fake_last_name(), 'ip_address'
, md5((message->'meta'->"ip_addr')::TEXT), 'email', NULL)) - ARRAY['
content']; $func$;

SELECT my_masks.clean_comment(message)
FROM website_comment;

DALIBO 27

Feb. 2023 Data Masking with PostgreSQL Anonymizer

clean_comment

{'meta': {'name': 'Morgan', 'email': None, 'ip_address": '1d8cbcdef988d55982af1536922ddcd1'}}
{'meta": {'name': 'Thomas', 'email': None, 'ip_address': None}}

{'meta’: {'name’: 'Clarke', 'email': None, 'ip_address': None}}

SECURITY LABEL
FOR anon ON COLUMN website_comment.message IS 'MASKED WITH FUNCTION
my_masks.clean_comment (message)';

28 DALIBO

4 - Generalization

The main idea of generalization is to ”blur” the original data. For example, instead of saying
"Mister X was born on July 25, 1989”, we can say "Mister X was born is the 80's”. The information
is still true, but it is less precise and it can't be used to reidentify the subject.

The Story

Paul hired dozens of employees over the years. He kept a record of their hair color, size and medical
condition.

Paul wants to extract weird stats from these details. He provides generalized views to Pierre.

How it works

Jack

De

rite

AA
Generalized

Views

Paul

A
\

Pierre

«—
23
QD
o

Learning Objective

In this section, we will learn:

29

Feb. 2023 Data Masking with PostgreSQL Anonymizer

- The difference between masking and generalization
- The concept of "K-anonymity”

The ”employee” table

DROP TABLE IF EXISTS employee CASCADE;
CREATE TABLE employee (id INT PRIMARY KEY, full_name TEXT, first_day

DATE, last_day DATE, height INT, hair TEXT, eyes TEXT, size TEXT,
asthma BOOLEAN, CHECK(hair = ANY(ARRAY['bald','blond','dark','red'])),
CHECK(eyes = ANY(ARRAY['blue','green','brown'])) , CHECK(size = ANY(
ARRAY['S','M',"L',"XL','XXL'1)));

o This is awkward and illegal.

Loading the data:

curl -Ls https://dali.bo/employee -o /tmp/employee.tsv
head -n3 /tmp/employee.tsv

COPY employee
FROM '/tmp/employee.tsv'

SELECT count(*)
FROM employee;

count

16

SELECT full_name,

first_day,
hair,
SIZE,
asthma

FROM employee
LIMIT 3;

30

DALIBO

Data Masking with PostgreSQL Anonymizer

Feb. 2023

full_name first_day

hair size asthma

Luna Dickens 2018-07-22 blond L True

Paul Wolf 2020-01-15 bald M False

Rowan Hoeger 2018-12-01 dark XXL True

Data suppression

Paul wants to find if there's a correlation between asthma and the eyes color.

He provides the following view to Pierre.

DROP MATERIALIZED VIEW IF EXISTS v_asthma_eyes;

CREATE MATERIALIZED VIEW v_asthma_eyes AS

SELECT eyes,
asthma
FROM employee;

SELECT x
FROM v_asthma_eyes
LIMIT 3;

eyes

asthma

blue
brown

blue

True
False

True

Pierre can now write queries over this view.

SELECT eyes,
100*COUNT (1) FILTER (

WHERE asthma) / COUNT(1) AS asthma_rate

FROM v_asthma_eyes
GROUP BY eyes;

DALIBO

31

Feb. 2023 Data Masking with PostgreSQL Anonymizer

eyes asthma_rate

green 100
brown 37
blue 33

Pierre just proved that asthma is caused by green eyes.

K-Anonymity

The 'asthma' and 'eyes' are considered as indirect identifiers.

SECURITY LABEL
FOR anon ON COLUMN v_asthma_eyes.eyes IS 'INDIRECT IDENTIFIER';

SECURITY LABEL
FOR anon ON COLUMN v_asthma_eyes.asthma IS 'INDIRECT IDENTIFIER';

g run-postgres: ‘INDIRECT IDENTIFIER’ is not a valid label for a column

SELECT anon.k_anonymity('v_asthma_eyes');

k_anonymity

None

The v_asthma_eyes has '2-anonymity'. This means that each quasi-identifier combination (the 'eyes-
asthma' tuples) occurs in at least 2 records for a dataset.

In other words, it means that each individual in the view cannot be distinguished from at least 1 (k-1)
other individual.

Range and Generalization functions

32 DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

DROP MATERIALIZED VIEW IF EXISTS v_staff_per_month;

CREATE MATERIALIZED VIEW v_staff_per_month AS

SELECT anon.generalize_daterange(first_day, 'month') AS first_day,
anon.generalize_daterange(last_day, 'month') AS last_day

FROM employee;

SELECT x
FROM v_staff_per_month
LIMIT 3;

first_day last_day

[2018-07-01,2018-08-01) [2018-12-01,2019-01-01)
[2020-01-01, 2020-02-01) (None, None)
[2018-12-01,2019-01-01) [2018-12-01,2019-01-01)

Pierre can write a query to find how many employees were hired in november 2021.

SELECT COUNT(1) FILTER (
WHERE make_date(2019, 11, 1) BETWEEN lower (
first_day) AND COALESCE (upper(last_day), now())

)
FROM v_staff_per_month;

count

Declaring the indirect identifiers

Now let's check the k-anonymity of this view by declaring which columns are indirect identifiers.

SECURITY LABEL
FOR anon ON COLUMN v_staff_per_month.first_day IS 'INDIRECT IDENTIFIER';

SECURITY LABEL
FOR anon ON COLUMN v_staff_per_month.last_day IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_staff_per_month');

DALIBO 33

Feb. 2023 Data Masking with PostgreSQL Anonymizer

A

In this case, the k factor is 1 which means that at least one unique individual can be identified directly
by his/her first and last dates.

run-postgres: ‘INDIRECT IDENTIFIER’ is not a valid label for a column

Exercices

E401 - Simplify v_staff_per_month and decrease granularity

Generalizing dates per month is not enough. Write another view called 'v_staff_per_year' that will
generalize dates per year.

Also simplify the view by using a range of int to store the years instead of a date range.

E402 - Staff progression over the years

How many people worked for Paul for each year between 2018 and 20217

E403 - Reaching 2-anonymity for the v_staff_per_year view

What is the k-anonymity of ‘v_staff_per_month_years’?

Solutions

S401

DROP MATERIALIZED VIEW IF EXISTS v_staff_per_year;

CREATE MATERIALIZED VIEW v_staff_per_year AS
SELECT int4range(extract(YEAR
FROM first_day)::INT, extract(YEAR
FROM last_day) ::INT
» '[1') AS
period
FROM employee;

34 DALIBO

Data Masking with PostgreSQL Anonymizer Feb. 2023

O ‘[’ will include the upper bound

w

SELECT =

FROM v_staff_per_year

LIMIT 3;
period
[2018,2019)
[2020, None)
[2018,2019)

$402

SELECT YEAR,
COUNT (1) FILTER (
WHERE YEAR <@ period)
FROM generate_series(2018, 2021) YEAR,

v_staff_per_year
GROUP BY YEAR

ORDER BY YEAR ASC;

year count

2018 4
2019 6
2020 9
2021 10

$403

SECURITY LABEL
FOR anon ON COLUMN v_staff_per_year.period IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_staff_per_year');

DALIBO 35

Feb. 2023

Data Masking with PostgreSQL Anonymizer

A

run-postgres: ‘INDIRECT IDENTIFIER’ is not a valid label for a column

36

DALIBO

Conclusion

Cleanup!

DROP EXTENSION anon CASCADE;

REASSIGN OWNED BY jack TO postgres;

REVOKE ALL ON SCHEMA PUBLIC
FROM jack;

REASSIGN OWNED BY paul TO postgres;

REASSIGN OWNED BY pierre TO postgres;

DROP DATABASE IF EXISTS boutique;

g run-postgres: database “boutique” is being accessed by other users DETAIL: There is 1
other session using the database.

DROP ROLE IF EXISTS jack;
DROP ROLE IF EXISTS paul;

DROP ROLE IF EXISTS pierre;

37

Feb. 2023 Data Masking with PostgreSQL Anonymizer

g run-postgres: role “jack” cannot be dropped because some objects depend on it DETAIL:
5 objects in database boutique

Many Masking Strategies

Static Masking? : perfect for “once-and-for-all” anonymization

Dynamic Masking? : useful when one user is untrusted

Anonymous Dumps® : can be used in CI/CD workflows

Generalization® good for statistics and data science

Many Masking Functions

Destruction and partial destruction
Adding Noise
Randomization

Faking and Advanced Faking

Pseudonymization

Generic Hashing

Custom masking

RTFM -> Masking Functions®

Advantages

- Masking rules written in SQL
- Masking rules stored in the database schema

thttps://postgresql-anonymizer.readthedocs.io/en/stable/static_masking/
Zhttps://postgresql-anonymizer.readthedocs.io/en/stable/dynamic_masking/
3https://postgresql-anonymizer.readthedocs.io/en/stable/anonymous_dumps/
Shttps://postgresql-anonymizer.readthedocs.io/en/latest/masking_functions/

38 DALIBO

https://postgresql-anonymizer.readthedocs.io/en/stable/static_masking/
https://postgresql-anonymizer.readthedocs.io/en/stable/dynamic_masking/
https://postgresql-anonymizer.readthedocs.io/en/stable/anonymous_dumps/
https://postgresql-anonymizer.readthedocs.io/en/latest/masking_functions/

Data Masking with PostgreSQL Anonymizer

Feb. 2023

- No need for an external ETL
- Works with all current versions of PostgreSQL
- Multiple strategies, multiple functions

Drawbacks

- Does not work with other databases (hence the name)
- Lack of feedback for huge tables (> 10 TB)

Also...

Other projects you may like

- pg_sample® : extract a small dataset from a larger PostgreSQL database
- PostgreSQL Faker’ : An advanced faking extension based on the python Faker lib

Help Wanted!

This is a free and open project!
labs.dalibo.com/postgresql_anonymizer®

Please send us feedback on how you use it, how it fits your needs (or not), etc.

This is a 4 hour workshop!

Sources are here: gitlab.com/dalibo/postgresql_anonymizer®

Download the PDF Handout!

Shttps://github.com/mla/pg_sample
"https://gitlab.com/dalibo/postgresql_faker
8https://labs.dalibo.com/postgresql_anonymizer
https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to
©https://dalibo.gitlab.io/postgresql_anonymizer/how-to.handout.pdf

DALIBO

39

https://github.com/mla/pg_sample
https://gitlab.com/dalibo/postgresql_faker
https://labs.dalibo.com/postgresql_anonymizer
https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to
https://dalibo.gitlab.io/postgresql_anonymizer/how-to.handout.pdf

Feb. 2023 Data Masking with PostgreSQL Anonymizer

Questions?

40 DALIBO

	Welcome to Paul’s Boutique !
	The Story
	Objectives
	About PostgreSQL Anonymizer
	About GDPR
	Requirements
	The Roles
	The Sample database
	Authors
	License
	Credits

	1 - Static Masking
	The story
	How it works
	Learning Objective
	The “customer” table
	The “payout” table
	Activate the extension
	Declare the masking rules
	Apply the rules permanently
	Exercices
	E101 - Mask the client’s first names
	E102 - Hide the last 3 digits of the postcode
	E103 - Count how many clients live in each postcode area?
	E104 - Keep only the year of each birth date
	E105 - Singling out a customer

	Solutions
	S101
	S102
	S103
	S104
	S105

	2- How to use Dynamic Masking
	The Story
	How it works
	Objectives
	The “company” table
	The "supplier" table
	Activate the extension
	Dynamic Masking
	Activate the masking engine
	Masking a role

	Masking the supplier names
	Exercices
	E201 - Guess who is the CEO of "Johnny's Shoe Store"
	E202 - Anonymize the companies
	E203 - Pseudonymize the company name

	Solutions
	S201
	S202
	S203

	3- Anonymous Dumps
	The Story
	How it works
	Learning Objective
	Load the data
	Activate the extension
	Masking a JSON column
	Exercices
	E301 - Dump the anonymized data into a new database
	E302 - Pseudonymize the meta fields of the comments

	Solutions
	S301
	S302

	4 - Generalization
	The Story
	How it works
	Learning Objective
	The "employee" table
	Data suppression
	K-Anonymity
	Range and Generalization functions
	Declaring the indirect identifiers

	Exercices
	E401 - Simplify v_staff_per_month and decrease granularity
	E402 - Staff progression over the years
	E403 - Reaching 2-anonymity for the v_staff_per_year view

	Solutions
	S401
	S402
	S403

	Conclusion
	Clean up !
	Many Masking Strategies
	Many Masking Functions
	Advantages
	Drawbacks
	Also…
	Help Wanted!
	This is a 4 hour workshop!
	Questions?

